Modular (Remainder) Arithmetic

n=qgk +r (forsome k;r<k) =mp nmodk=r
eg 37 = (2)(17) + 3 =) 37 mod 17 =3

Divisibility notation: 17137 -3



Sets of Remainders

X X mod 5

2(5-2) 3

-15-1)* 4

0 0

1 1

2 2

3 3

4 4

5 0

6 1

7 9) * Compilers may
Q 3 not handle this...



Congruences

mod 5:

0=5=10 == (Omod5) =(5mod>5)=(10mod>5)
I=6=11...

2="T=12...

3=8=13...

4= 9= 14(= -1 = -6)



Operations

(X + y) mod n = (x mod n + y mod n) mod n
(X -y)mod n =(x mod n - y mod n) mod n

xy mod n = (x mod n)(y mod n) mod n

i

(a + k;n)(b + nk,n) = ab + n(bk, + ak, + nk, k,)



‘Shortcuts’ to prevent
overtlow

Example: last digit of n® Fibonacci number
Example: 373! mod 997

= ((((1 mod 997)*2 mod 997)*3 mod 997)*4 mod 997)...



‘Division’

ax = b (mod m)
Eg: 5x =7 (mod 11)

Solution: 5(8) =40=(11)3) + 7



Euclidean Algorithm
gcd(43, 29) = gcd(43 mod 29, 29)

43
29
14
1 mmp rclatively prime

Bezout’s Identity:

gcd(a, b) = au + bv
mm)p | =au + bv (if a, b relatively prime)
=) y5=1-bv=1(modb)

u=al (modb)



Extended Euclidean Algorithm

43 29:
q I u \4
43 1 0
- 29 0 1
1 14 1 1
1 -2 3
14 0 - -

1 =-2(43)+3(29) = (3)(29) =1 (mod 43)

a(29) =5 (mod 43)
(5)(29°1) =5*3 mod 43 = 15
(15)(29) mod 43 =435 mod 43 =5



Non prime cases:

ax = b (mod m) gcd(a, m)=d? 1
if d | b problem has multiple solutions

Eg: 2x =3 (mod 10)

gcd(2, 10) =2

but 3 is not divisible by 2
no solution

Eg: 2x =4 (mod 10) divide through by gcd
X =2 (mod 5)
mmp x=2o0r7 (mod10) (add multiples of J5)



Chinese Remainder Theorem

Given x =a, (mod m, *) | |y, =n,"' (mod m,)
fork=1,2, ...
eg:
eg: Y, =151 (mod 2)
X =1 mod 2 =11 (mod2)=1
X =2 mod 3
X =3mod 5 X = (a;n,y, + a,n,y, +...)
mod N
N=7 m, =2%3*5=30
n, = N/m, eg X =23 mod 30

eg:
n,=30/2=15etc... *all relatively prime




Not relatively prime

eg:
X =3 mod 6
X =7 mod 10

gcd(6, 10) =2
Split:
x =1 mod 2+ don’t contradict —> x=1mod 2

Xx =0 mod 3 X =2 mod 5

thus recombine to give x = 27 mod 30



Matrices:

(solving linear equations with detached coefficients)

X+y+z=95
X—y+2z2=3
X+y—-32=0
63* 1 1
1 -1 2
1 1 -3

N

-~

N

111 : 5
021 : 2
0O 0-4 -5 )

* pivot



Remainder Matrices

X+y+z=35

X—y+2z2=3 - ~

X+y—-—32=0 1 2

011 1

taking mod 3: /\O 02 L

4 N\ 2z=1 (mod 3)

1 1 1 = 2 z=2

1 2 2 0 ij

1 1 O 0,



The easiest case: the prime case

Mod a prime, every number except 0
has an inverse

Thus, we can multiply a row by the
inverse of the pivot



Non-prime mods

Use fundamental theorem of arithmetic and Chinese Remainder
Theorem

Eg mod 6: (6 = 2*3) mod 3:
2 1 ; 4 2 1 ; 1
N
[3 2 ; J {O 2 ; J
/ X;=1,%x,=2

(AN

X1=1,X2=0\ X1=1,X2=2



The prime power case

2 and 3 were relatively prime, but what 1f you were working mod
127 12 = 3%22,

Can’t use Chinese remainder theorem since 2 and 2 are not
relatively prime. Instead, work mod 22 and find pivot n such that:

n mod 2k ? 0
for smallest possible k.

For example, if working mod 32 and the possible pivots are 12, 8
and 16, pivot around the 12 since 12 mod 8 ? 0.

In this case you cannot find 12x = 1 (mod 32), instead solve for
12x =4 (mod 32). This can be done via extended Euclid since
gcd(12, 32) =4 and yields 12*3 =4 (mod 32). Thus multiply the
pi1vot row by 3.



Example

Mod 32:
/8 5 3 . 27\
12 3 5 . 1

Move first row to top (current pivot row) and multiply by 3:

4 0 15 . 3
8 5 3 . 27
16 2 1 . 23



4 9 15 ; 3
0 19 5 ; 21
0 30 5 ; 11

Now 19 mod 2 = 1 thus can find 19! mod 32 =27

(4 9 15 - 3 )
0 1 7 : 23
0 0 19 - 25,

Which yields x;, =1, x, =2, x5, =3



Special case: mod 2
mod 2:

0+0=0
O+1=1
1+0=1
1+1=0

equivalent to binary xor



So...

Unlike simultaneous ‘or’ equations which
are NP-Complete, simultaneous ‘xor’
equations are solvable 1n polynomial

(generally cubic) time via Gaussian
elimination.



CEOI Example: X-Planet

X-Planet: given a set of lightbulbs, all initially off, and
switches which each toggle the state of a given set of
lightbulbs, determine any combination of switches which
will turn on all the lightbulbs.

Equations: each lightbulb’s state 1s affected by certain
switches and 1n total an odd amount of these must be
pressed.



I0I Example: Clocks

Given: a set of clocks in different positions, and controls
which rotate a subset of clocks, determine the shortest
sequence of moves to rotate all clocks to 12:00

 The original question limites the number of clocks to 9
and the possible positions on each clock to 4, so this 1s
solvable (more easily) by brute force.

e Mod equations where you have more variables than
equations will usually give multiple possible solutions. To
determine an optimal solution you would still have to
search within these; however the search would be reduced.



OV

Q\\Q . . .
% Binary Manipulation
Q

English Sets Pascal C
and (1) 1ntersection and &
or union or |
toggle/xor (2) union\intersection Xxor A
left shift - shl <<
right shift (3) - shr >>

(1) can be equivalent to mod by powers of 2

(2) equivalent to adding bits mod 2

(3) equivalent to multiplying and (integer) dividing by
powers of 2



Advantages

Depending on machine word size, these operations
can work on 32 bits at once.

They are all small operations.

Eg: when working mod 2 with 31 or fewer variables,
store as an integer. To add two rows, just xor them.
To determine which row next to use as a pivot, just
sort in descending order.



Binary Euclidean Algorithm

(1) If M, N even:
gcd(M, N) = 2*gcd(M/2, N/2)
(2) If M even while N 1s odd:
gcd(M, N) = gcd(M/2, N)
(3) If M, N odd:
gcd(M, N) = gcd(min(M, N), IM — NI)

(replace larger with (larger — smaller); this will then be even and (1)
can be applied.)



Binary Euclidean Algorithm

Disadvantage

In general, requires a few
more steps

Advantage

Requires only binary shifts,
binary ands, subtractions
and 1f statements.

These operations are much
faster than divisions and
mods.



Extended Binary Euclid?

Possible, eg:
During halving stage:

gcd(7, 8) =gcd(7, 4)
Given 1 =-1*7+2%4,1e —1*7 =1 (mod 4)
We can deduce —1*7 or (-1 + 4)*7 =1 (mod 8)

gcd(7,4) =gcd(7, 2)

Given 1 = 1*7 + -3*2,ie -3*2 =1 (mod 7)
We can deduce —3*4*2-1 =1 (mod 7)

2-1 can always be found quickly



Possible, but complicated




Summary

Type of problems to tackle with simultaneous mod equations:
Toggle/cyclic states affected linearly by different sets of stimuli,
eg bulbs and button presses, eg 7 Guest puzzle.

Use mod theory with:
Anything numeric that could be thought of in terms of remainders.

Use binary operations:

When dealing with sets which can be stored in full and whose
intersections/unions etc must be calculated quickly

For the binary Euclidean algorithm.




