
Modular (Remainder) Arithmetic

n = qk + r (for some k; r < k)

eg 37 = (2)(17) + 3

Divisibility notation: 17 | 37 - 3

n mod k = r

37 mod 17 = 3



Sets of Remainders
x

-2 (5 – 2)
-1 (5 – 1) *
0
1
2
3
4
5
6
7
8

x mod 5

3
4
0
1
2
3
4
0
1
2
3

* Compilers may
not handle this…



Congruences

mod 5:

0 =  5 =  10 (0 mod 5) = (5 mod 5) = (10 mod 5)
1 =  6 =  11…
2 =  7 =  12…
3 =  8 =  13…
4 =  9 =  14 (=  -1 =  -6)



Operations

(x + y) mod n = (x mod n + y mod n) mod n
(x - y) mod n = (x mod n - y mod n) mod n

xy mod n = (x mod n)(y mod n) mod n

(a + k1n)(b + nk2n) = ab + n(bk1 + ak2 + n k1 k2)



‘Shortcuts’ to prevent
overflow

Example: last digit of nth Fibonacci number

Example: 373! mod 997

= ((((1 mod 997)*2 mod 997)*3 mod 997)*4 mod 997)…



‘Division’

ax = b (mod m)

Eg: 5x = 7 (mod 11)

Solution: 5(8) = 40 = (11)(3) + 7



Euclidean Algorithm
gcd(43, 29) = gcd(43 mod 29, 29)

43
29
14
1 relatively prime

Bezout’s Identity:

gcd(a, b) = au + bv
1 = au + bv (if a, b relatively prime)
ua = 1 - bv =  1 (mod b)

u = a-1 (mod b)



Extended Euclidean Algorithm

q
-
-
1
2
14

r
43
29
14
1
0

43:
u
1
0
1
-2
-

29:
v
0
1
-1
3
-

1 = -2(43) + 3(29) (3)(29) = 1 (mod 43)

a(29) = 5 (mod 43)
(5)(29-1) = 5*3 mod 43 = 15
(15)(29) mod 43 = 435 mod 43 = 5



Non prime cases:

ax = b (mod m) gcd(a, m) = d ?  1
if d | b problem has multiple solutions

Eg: 2x = 3 (mod 10)
gcd(2, 10) = 2
but 3 is not divisible by 2

no solution

Eg: 2x = 4 (mod 10) divide through by gcd
x = 2 (mod 5)

x = 2 or 7 (mod 10) (add multiples of 5)



Chinese Remainder Theorem
Given x = ak (mod mk*)
for k = 1, 2, …

eg:
x = 1 mod 2
x = 2 mod 3
x = 3 mod 5

N = ?  mk = 2*3*5 = 30
nk = N / mk

eg:
n1 = 30 / 2 = 15 etc…

yk = nk
-1 (mod mk)

eg:
y1 = 15-1 (mod 2)

= 1-1 (mod 2) = 1

x = (a1n1y1 + a2n2y2 +…)
mod N

eg x = 23 mod 30

*all relatively prime



Not relatively prime

eg:
x = 3 mod 6
x = 7 mod 10

gcd(6, 10) = 2

Split:
x = 1 mod 2 don’t contradict
x = 0 mod 3

thus recombine to give x = 27 mod 30

x = 1 mod 2
x = 2 mod 5



Matrices:
(solving linear equations with detached coefficients)

x + y + z = 5
x – y + 2z = 3
x + y – 3z = 0

1  *  1  1 : 5
1 -1  2 : 3
1  1 -3 : 0

1  1  1 :  5
0 -2  1 : -2
0  0 -4 : -5

* pivot



Remainder Matrices
x + y + z = 5
x – y + 2z = 3
x + y – 3z = 0

taking mod 3:

1 1 1 : 2
1 2 2 : 0
1 1 0 : 0

1 1 1 : 2
0 1 1 : 1
0 0 2 : 1

2z = 1 (mod 3)
z = 2
y = 2
x = 1



The easiest case: the prime case

Mod a prime, every number except 0
has an inverse

Thus, we can multiply a row by the
inverse of the pivot



Use fundamental theorem of arithmetic and Chinese Remainder
Theorem

Eg mod 6: (6 = 2*3)
2 1 : 4
3 2 : 1

mod 2:
0 1 : 0
1 0 : 1
x1 = 1, x2 = 0

Non-prime mods

mod 3:
2 1 : 1
0 2 : 1
x1 = 1, x2 = 2

x1 = 1, x2 = 2



The prime power case
2 and 3 were relatively prime, but what if you were working mod
12? 12 = 3*22.
Can’t use Chinese remainder theorem since 2 and 2 are not
relatively prime. Instead, work mod 22 and find pivot n such that:

n mod 2k ?  0
for smallest possible k.

For example, if working mod 32 and the possible pivots are 12, 8
and 16, pivot around the 12 since 12 mod 8 ?  0.

In this case you cannot find 12x = 1 (mod 32), instead solve for
12x = 4 (mod 32). This can be done via extended Euclid since
gcd(12, 32) = 4 and yields 12*3 = 4 (mod 32). Thus multiply the
pivot row by 3.



Example
Mod 32:

8 5 3 : 27
12 3 5 : 1
16 2 1 : 23

Move first row to top (current pivot row) and multiply by 3:

4 9 15 : 3
8 5 3 : 27
16 2 1 : 23



4 9 15 : 3
0 19 5 : 21
0 30 5 : 11

Now 19 mod 2 = 1 thus can find 19-1 mod 32 = 27

4 9 15 : 3
0 1 7 : 23
0 0 19 : 25

Which yields x1 = 1, x2 = 2, x3 = 3



Special case: mod 2
mod 2:

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 0

equivalent to binary xor



So…

Unlike simultaneous ‘or’ equations which
are NP-Complete, simultaneous ‘xor’
equations are solvable in polynomial
(generally cubic) time via Gaussian
elimination.



CEOI Example: X-Planet

X-Planet: given a set of lightbulbs, all initially off, and
switches which each toggle the state of a given set of
lightbulbs, determine any combination of switches which
will turn on all the lightbulbs.

Equations: each lightbulb’s state is affected by certain
switches and in total an odd amount of these must be
pressed.



IOI Example: Clocks
Given: a set of clocks in different positions, and controls
which rotate a subset of clocks, determine the shortest
sequence of moves to rotate all clocks to 12:00

• The original question limites the number of clocks to 9
and the possible positions on each clock to 4, so this is
solvable (more easily) by brute force.

• Mod equations where you have more variables than
equations will usually give multiple possible solutions. To
determine an optimal solution you would still have to
search within these; however the search would be reduced.



Binary Manipulation
C
&
|
^
<<
>>

Pascal
and
or
xor
shl
shr

English
and (1)
or
toggle/xor (2)
left shift
right shift (3)

(1) can be equivalent to mod by powers of 2
(2) equivalent to adding bits mod 2
(3) equivalent to multiplying and (integer) dividing by
powers of 2

Sets
intersection
union
union\intersection
-
-

001
101
010
110
101
0



Advantages

Depending on machine word size, these operations
can work on 32 bits at once.

They are all small operations.

Eg: when working mod 2 with 31 or fewer variables,
store as an integer. To add two rows, just xor them.
To determine which row next to use as a pivot, just
sort in descending order.



Binary Euclidean Algorithm

(1) If M, N even:
gcd(M, N) = 2*gcd(M/2, N/2)

(2) If M even while N is odd:
gcd(M, N) = gcd(M/2, N)

(3) If M, N odd:
gcd(M, N) = gcd(min(M, N), |M – N|)

(replace larger with (larger – smaller); this will then be even and (1)
can be applied.)



Binary Euclidean Algorithm

Disadvantage

In general, requires a few
more steps

Advantage

Requires only binary shifts,
binary ands, subtractions
and if statements.

These operations are much
faster than divisions and
mods.



Extended Binary Euclid?

Possible, eg:

During halving stage:

gcd(7, 8) = gcd(7, 4)
Given 1 = -1*7 + 2*4, ie –1*7 = 1 (mod 4)
We can deduce –1*7 or (-1 + 4)*7 = 1 (mod 8)

gcd(7, 4) = gcd(7, 2)
Given 1 = 1*7 + -3*2, ie –3*2 = 1 (mod 7)
We can deduce –3*4*2-1 = 1 (mod 7)
2-1 can always be found quickly



Possible, but complicated



Summary

Type of problems to tackle with simultaneous mod equations:
Toggle/cyclic states affected linearly by different sets of stimuli,
eg bulbs and button presses, eg 7th Guest puzzle.

Use mod theory with:
Anything numeric that could be thought of in terms of remainders.

Use binary operations:
When dealing with sets which can be stored in full and whose
intersections/unions etc must be calculated quickly
For the binary Euclidean algorithm.


